Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2019 lúc 12:03

Đáp án C

Ta có

Khi đó

Vậy giá trị nhỏ nhất của biểu thức P là  3 + 2 2

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 4 2019 lúc 17:07

Bình luận (0)
Nguyễn Ngọc Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 12 2019 lúc 12:09

Đáp án B

Ta có ln   x y = ln   x + ln   y ≥ ln x 2 + y

⇔ x y ≥ x 2 + y ⇔ y x - 1 ≥ x 2

Vì x = 1 không thỏa và y > 0 => x > 1

⇒ P = x y ≥ x 2 x - 1 + x = f x

X é t   h à m   s ố   f x = x 2 x - 1 + x   v ớ i   x > 1

⇒ f ' x = x 2 - 2 x x - 1 2 + x = 2 x 2 - 4 x + 1 x - 1 2

⇒ f ' x = 0 ⇔ x = 2 + 2 2   v ì   x > 1

Dựa vào bảng biến thiên của hàm số f(x) suy ra

⇒ M i n P = M i n x > 1 f x = f 1 = 3 + 2 2 .

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 12 2018 lúc 10:38

Đáp án C

Ta có:

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 6 2017 lúc 10:36

Đáp án B

Ta có ln x y = ln x + ln y ≥ ln x 2 + y ⇔ x y ≥ x 2 + y ⇔ y x − 1 ≥ x 2

Vì x = 1  không thỏa và y > 0 ⇒ x > 1 ⇒ P = x y ≥ x 2 x − 1 + x = f x

Xét hàm số f x = x 2 x − 1 + x  với  x > 1

⇒ f ' x = x 2 − 2 x x − 1 2 + x = 2 x 2 − 4 x + 1 x − 1 2 → f ' x = 0 ⇔ x = 2 + 2 2  vì  x > 1

Dựa vào bảng biến thiên của hàm số f x  suy ra  ⇒ M i n P = M in x > 1 f x = f 1 = 3 + 2 2

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 9 2019 lúc 8:17


Bình luận (0)
Trần Tuấn Hoàng
Xem chi tiết
Người Vô Danh
28 tháng 2 2022 lúc 22:48

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=z^2+\left(x+y\right)^2+2z\left(x+y\right)=36\)

áp dụng BĐT cosi : 

\(z^2+\left(x+y\right)^2\ge2z\left(x+y\right)\)

<=> \(z^2+\left(x+y\right)^2+2z\left(x+y\right)\ge4z\left(x+y\right)=36< =>z\left(x+y\right)\ge9\)

ta lại có \(\dfrac{x+y}{xyz}=\dfrac{x}{xyz}+\dfrac{y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\) áp dụng BĐT buhihacopxki dạng phân thức => \(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{yz+xz}=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\left(đpcm\right)\)

dấu bằng xảy ra khi \(\left[{}\begin{matrix}yz=xz< =>x=y\\x+y+z=6\\z^2=\left(x+y\right)^2\end{matrix}\right.< =>\left[{}\begin{matrix}x+y+z=6\\z=2x=2y\end{matrix}\right.< =>\left[{}\begin{matrix}x=y=\dfrac{3}{2}\\z=3\end{matrix}\right.\)

Bình luận (4)
Hồ Nhật Phi
28 tháng 2 2022 lúc 23:00

\(\dfrac{x+y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\).

Áp dụng bất đẳng thức Cauchy-Schawrz dạng Engel:

\(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{z\left(x+y\right)}\)     (1).

Áp dụng bất đẳng thức Cauchy cho hai số dương z và x+y, ta có:

\(z\left(x+y\right)\le\left(\dfrac{x+y+z}{2}\right)^2=9\). Suy ra, \(\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\)     (2).

Từ (1) và (2), suy ra \(\dfrac{x+y}{xyz}\ge\dfrac{4}{9}\) (đpcm).

Dấu "=" xảy ra khi và chỉ khi \(\dfrac{1}{yz}=\dfrac{1}{xz}\) và \(z=x+y\).

 

Bình luận (0)
Đỗ Đức Đạt
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 3 2021 lúc 17:09

Vì x,y,z dương nên xyz dương

nên chia cả hai vế của bđt ta được bđt \(\frac{x+y}{xyz}\ge1\)và ta cần chứng minh bđt này đúng thì bđt ban đầu được chứng minh

Ta có \(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)( Cauchy-Schwarz dạng Engel ) (*)

Lại có \(z\left(x+y\right)\le\left(\frac{z+x+y}{2}\right)^2=2^2=4\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{4}=1\)( AM-GM ) (**)

Từ (*) và (**) => \(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge1\)( đpcm )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y,z>0\\x+y+z=4\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Vương Phú
Xem chi tiết